LIPSCHITZ p-INTEGRAL OPERATORS AND LIPSCHITZ p-NUCLEAR OPERATORS
نویسندگان
چکیده
In this note we introduce strongly Lipschitz p-integral operators, strongly Lipschitz p-nuclear operators and Lipschitz p-nuclear operators. It is shown that for a linear operator, the Lipschitz p-nuclear norm is the same as its usual p-nuclear norm under certain conditions. We also prove that the Lipschitz 2-dominated operators and the strongly Lipschitz 2-integral operators are the same with equal norms. Finally, we show that the Lipschitz p-integral norm of a Lipschitz map from a finite metric space into a Banach space is the same as its Lipschitz p-nuclear norm.
منابع مشابه
Compact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملLipschitz Estimates for Multilinear Commutator of Pseudo-differential Operators
As the development of singular integral operators, their commutators and multilinear operators have been well studied (see [4, 5, 6, 7, 8, 9, 10]). In [4, 5, 6, 7, 8, 9, 10], the authors prove that the commutators and multilinear operators generated by the singular integral operators and BMO functions are bounded on L(R) for 1 < p <∞; Chanillo (see [2]) proves a similar result when singular int...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کامل